
C/C++ Causal Cycles
Confound Compositionality

ABSTRACT
The rise of multicore processors has made concurrency ubiquitous. In response, mainstream lan-
guages have begun to offer primitives for concurrent programming. To avoid the cost of inter-core
synchronisation, the new C/C++ standard, C11 [2, 3], offers weakly consistent relaxed operations,
alongside traditional reads, writes and mutexes. When using relaxed operations, different threads
may see different, apparently contradictory orders of events.
C11 permits a particularly suprising kind of relaxed behaviour: cycles in causality. Two condi-

tional branches on different threads may be satisfied by writes down the opposite thread’s branch.
That is, neither branch could be taken if the other didn’t occur – an apparent paradox.

x = 0; y = 0;

if (x == 42) || if (y == 23)

y = 23; || x = 42;

Such cycles could arise from hardware speculation or compiler optimisations; however, it is unclear
whether they occur on current implementations. They are known to be problematic: the C11
standard heavily deprecates them, but to allow certain important optimisations, it falls short of
banning them entirely.
A property is compositional if each program sub-components can be analysed separately, while

assuming its surrounding context is well-behaved. By allowing programs to be decomposed, com-
positionality aids documentation, testing and verification. In most languages, safety properties
(e.g., absence of memory faults) are compositional, because a given fault must originate in the sub-
component or its context, but not both. Causal cycles in C11 allow two faults to cause each other,
which violates this assumption and breaks compositionality [1]. This is probably undesirable.

BODY
C/C++ permit seemingly-impossible cycles in causality. This breaks composi-
tionality: two apparently safe programs may fault when composed.
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